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1. Preliminaries
1.1 Introduction to Game Theory
Game theory is a mathematical framework for analyzing strategic interactions among
multiple decision-makers (players) where the outcome depends on the choices of all players
involved. Unlike single-person optimization problems, in game theory, the best decision for
one player depends on the decisions made by others.

Definition 1.1 (Game): A game is a formal representation of a situation where:

Key Characteristics of a Game:

4. Applications of Bayesian Nash Equilibrium
5. Signaling Games
6. Perfect Bayesian Equilibrium
7. Reputation Building
8. Bayesian Cooperative Games

5. Advanced Topics
1. Auctions
2. Mechanism Design
3. Revelation Principle
4. Coalitional Games
5. Nash Bargaining
6. Cheap Talk
7. Algorithmic Game Theory
8. Fictitious Play and Learning in Games
9. Distributed Optimization

10. Selfish Routing
11. Evolutionary Games
12. Applications in Networks

1. Multiple decision-makers (players) interact
2. Each player has a set of possible actions
3. The outcome of the interaction depends on the actions chosen by all players
4. Each player has preferences over the possible outcomes

1. Involvement of multiple players, each with individual objectives
2. Rules of the game known in advance (often a common knowledge assumption)
3. Players are assumed to be rational



Applications of Game Theory:

Types of Games:

1.2 Decision Problems
Before diving into multi-player games, we first address single-person decision problems.

Definition 1.2 (Decision Problem): A decision problem consists of:

Preferences
Definition 1.3 (Preference Relation): A binary relation ≿ on set A where a ≿ b means "a is
preferred to or indifferent to b."

A preference relation ≿ is rational if it satisfies:

From ≿, we can derive:

Theorem 1.1: A preference relation ≿ on a finite set A can be represented by a utility
function u : A → R if and only if ≿ is rational.

4. The outcome depends on the joint choices of all involved participants

Economics: Trading, auctions, market behavior, oligopolies, monetary policy
Engineering: Resource allocation, network formation, security protocols, congestion
control
Computer Science: Distributed algorithms, multi-agent systems, cryptography
Biology: Evolution, animal behavior, ecological systems

1. Static vs. Dynamic
2. Complete vs. Incomplete Information
3. Perfect vs. Imperfect Information
4. Zero-sum vs. Non-zero-sum
5. Cooperative vs. Non-cooperative

1. A set of actions A available to the decision-maker
2. A set of outcomes resulting from those actions
3. Preferences over those outcomes

1. Completeness: For all a, b ∈ A, either a ≿ b or b ≿ a or both
2. Transitivity: For all a, b, c ∈ A, if a ≿ b and b ≿ c, then a ≿ c

Strict preference: a ≻ b if a ≿ b and not b ≿ a

Indifference: a ∼ b if a ≿ b and b ≿ a



A utility function u represents preference relation ≿ if for all a, b ∈ A:

a ≿ b ⟺ u(a) ≥ u(b)

Proof (Sketch):

Decision Trees: A graphical representation of sequential decision problems:

1.3 Utility, Market, and Discount Factor
Utility Functions
Utilities (also called payoff functions) are an arbitrary quantification u(q) of the goodness
coming from some input q.

Properties of Utility Functions:

Common Utility Functions:

Market

A market is a mechanism for allocating resources through the interaction of buyers and
sellers.

Definition 1.4 (Market Clearing Price): The price at which quantity supplied equals quantity
demanded.

(⇒) If u represents ≿, then completeness follows from the completeness of ≥ on R. For
transitivity, if a ≿ b and b ≿ c, then u(a) ≥ u(b) and u(b) ≥ u(c), which implies u(a) ≥ u(c),
thus a ≿ c.
(⇐) If ≿ is rational, define u(a) = |b ∈ A : a ≿ b|. This counts the number of elements
"dominated by" a. If a ≿ b, then any element dominated by b is also dominated by a, so
u(a) ≥ u(b). Conversely, if u(a) ≥ u(b), then either a ≿ b or, by completeness, b ≻ a. But
if b ≻ a, we would have u(b) > u(a), a contradiction. Thus, a ≿ b.

Nodes represent decision points
Branches represent possible actions
Leaves represent final outcomes with associated utilities

1. Ordinal representation: The exact values don't matter, only the ordering
2. Cardinal representation: When dealing with uncertainty, the exact values matter

1. Linear: u(q) = aq + b where a > 0 (risk-neutral)
2. Logarithmic: u(q) = log(q) (risk-averse)
3. Quadratic: u(q) = q − αq2 where α > 0 (risk-averse)
4. Power: u(q) = qα where 0 < α < 1 (risk-averse) or α > 1 (risk-loving)



Market Structures:

Substitute Goods: Two goods x and y are substitutes if an increase in the price of one
leads to an increase in demand for the other.

Definition 1.5 (Price Elasticity of Demand): The percentage change in quantity demanded
in response to a one percent change in price:

ϵd =
∂Q

∂P
⋅
P

Q

Discount Factor
Future payoffs are often valued less than immediate payoffs, captured by a discount factor.

Definition 1.6 (Discount Factor): A number δ ∈ (0, 1] that represents the present value of
one unit of payoff in the next period.

The present value of a payoff x received t periods in the future is δtx.

Interpretation of Discount Factor:

1.4 Lotteries and Expected Utility
When outcomes are uncertain, decisions involve lotteries (probability distributions over
outcomes).

Definition 1.7 (Lottery): A lottery p over set X = x1,x2, … ,xn is a probability distribution
where p(xi) ≥ 0 for all i and ∑n

i=1 p(xi) = 1.

In decision theory, we often represent uncertain events as choices made by "Nature," a non-
strategic player that selects outcomes according to known probabilities.

Von Neumann-Morgenstern Expected Utility Theory

1. Perfect Competition: Many firms, homogeneous products, price-taking behavior
2. Monopoly: Single seller, price-setting behavior
3. Oligopoly: Few sellers, strategic interaction

Cournot: Firms compete on quantity
Bertrand: Firms compete on price
Stackelberg: Sequential quantity choice

1. Time preference: Impatience
2. Risk of termination: Probability that the interaction continues
3. Interest rate: δ = 1

1+r
 where r is the interest rate



Definition 1.8 (von Neumann-Morgenstern Axioms): A preference relation ≿ over lotteries
satisfies the von Neumann-Morgenstern (vNM) axioms if:

Theorem 1.2 (vNM Utility Representation): If ≿ satisfies the vNM axioms, then there exists
a utility function u : X → R such that for any lotteries p and q:

p ≿ q ⟺ Ep[u(x)] ≥ Eq[u(x)]

where Ep[u(x)] = ∑n
i=1 p(xi)u(xi) is the expected utility of lottery p.

Moreover, u is unique up to positive affine transformations.

Proof (Sketch):

Compound Lotteries

Definition 1.9 (Compound Lottery): A compound lottery is a lottery over lotteries.

Theorem 1.3 (Reduction of Compound Lotteries): Under the vNM axioms, a decision-
maker is indifferent between a compound lottery and its reduced form.

If lottery p gives lottery qj with probability αj for j = 1, … ,m, then p is equivalent to the
reduced lottery r where:

r(xi) =
m

∑
j=1

αjqj(xi)

The Value of Information
Information has value if it allows better decisions.

Definition 1.10 (Expected Value of Perfect Information): The difference between:

1. Completeness and Transitivity: ≿ is rational
2. Continuity: For any lotteries p, q, r with p ≻ q ≻ r, there exists α ∈ (0, 1) such that

αp + (1 − α)r ∼ q

3. Independence: For any lotteries p, q, r and α ∈ (0, 1),
p ≿ q ⟺ αp + (1 − α)r ≿ αq + (1 − α)r

1. For each outcome x ∈ X, define the degenerate lottery δx that gives x with probability 1.
2. Choose two outcomes x∗ and x∗ such that δx∗ ≿ δx ≿ δx∗  for all x ∈ X.
3. For each outcome x, find the unique αx ∈ [0, 1] such that δx ∼ αxδx∗ + (1 − αx)δx∗  (by

continuity).
4. Define u(x) = αx.
5. Use the independence axiom to show that p ≿ q ⟺ Ep[u(x)] ≥ Eq[u(x)].
6. Uniqueness up to affine transformations follows from the fact that if v(x) = au(x) + b

where a > 0, then Ep[v(x)] = aEp[u(x)] + b, which preserves the ordering.



Mathematically, if X is the set of states of the world with probability distribution p, A is the set
of actions, and u(a,x) is the utility of action a in state x, then:

EVPI = ∑
x∈X

p(x) max
a∈A

u(a,x) − max
a∈A
∑
x∈X

p(x)u(a,x)

1.5 Risk Attitudes
Decision-makers may have different attitudes toward risk, categorized as:

Definition 1.11 (Risk Attitudes):

Definition 1.12 (Arrow-Pratt Measure of Absolute Risk Aversion):

A(x) = −
u′′(x)

u′(x)

A higher value of A(x) indicates greater risk aversion.

Definition 1.13 (Certainty Equivalent): For a lottery p, the certainty equivalent CE(p) is the
certain amount that makes the decision-maker indifferent between receiving CE(p) for sure
and facing the lottery p:

u(CE(p)) = Ep[u(x)]

Definition 1.14 (Risk Premium): The difference between the expected value of a lottery and
its certainty equivalent:

RP(p) = Ep[x] − CE(p)

2. Static Games of Complete Information
2.1 Normal Form Games

1. The expected utility with perfect information
2. The expected utility without additional information

1. Risk Neutral: Values a lottery at its expected monetary value
Utility function is linear: u(x) = ax + b where a > 0

u(E[X]) = E[u(X)]

2. Risk Averse: Prefers a certain outcome to a lottery with the same expected value
Utility function is concave: u′′(x) < 0

u(E[X]) > E[u(X)]

Examples: u(x) = log(x) or u(x) = √x

3. Risk Loving: Prefers a lottery to a certain outcome with the same expected value
Utility function is convex: u′′(x) > 0

u(E[X]) < E[u(X)]

Example: u(x) = x2 for x > 0



Definition 2.1 (Normal Form Game): A static game of complete information consists of:

We denote such a game as G = N , (Si)i∈N , (ui)i∈N .

For simplicity, we often use S = S1 × S2 × … × Sn to denote the set of strategy profiles.

For a strategy profile s = (s1, s2, … , sn) ∈ S, we use s−i to denote the strategies of all
players except i:

s−i = (s1, … , si−1, si+1, … , sn)

Thus, s = (si, s−i) for any player i.

Representation for Two-Player Games: For two-player games, we can represent the game
as a bi-matrix where:

Example 2.1 (Prisoner's Dilemma): Two suspects are questioned separately. Each has two
choices: cooperate (C) with the other or defect (D). The payoff matrix is:

C D

C (-1,-1) (-9,0)

D (0,-9) (-6,-6)

Definition 2.2 (Common Knowledge): A fact is common knowledge if:

In static games of complete information, we assume that the structure of the game (players,
strategies, and payoffs) is common knowledge.

2.2 Dominance and Rationality
A fundamental concept in game theory is the elimination of strategies that a rational player
would never play.

1. A set of players N = 1, 2, … ,n

2. A set of strategies Si for each player i ∈ N

3. A utility function ui : S1 × S2 × … × Sn → R for each player i ∈ N

Rows correspond to strategies of player 1
Columns correspond to strategies of player 2
Each cell contains a pair (u1(s1, s2),u2(s1, s2))

1. All players know it
2. All players know that all players know it
3. All players know that all players know that all players know it, and so on ad infinitum



Definition 2.3 (Strict Dominance): Strategy si ∈ Si is strictly dominated by strategy s′
i ∈ Si

if:

ui(s
′
i, s−i) > ui(si, s−i) ∀s−i ∈ S−i

Definition 2.4 (Weak Dominance): Strategy si ∈ Si is weakly dominated by strategy s′
i ∈ Si

if:

ui(s
′
i, s−i) ≥ ui(si, s−i) ∀s−i ∈ S−i

with strict inequality for at least one s−i.

Definition 2.5 (Dominant Strategy): Strategy s∗
i ∈ Si is a dominant strategy for player i if s∗

i

strictly dominates all other strategies in Si. That is, for all si ∈ Si with si ≠ s∗
i :

ui(s
∗
i , s−i) > ui(si, s−i) ∀s−i ∈ S−i

Iterative Elimination Procedures:

Definition 2.6 (Iterated Elimination of Strictly Dominated Strategies, IESDS):

Let S 0
i = Si for all i ∈ N . For each k ≥ 1, define:

S k
i = si ∈ S k−1

i : si is not strictly dominated in the game (S k−1
1 , … ,S k−1

n , (ui))

The set of strategies surviving IESDS is S∞
i = ∩∞

k=0S
k
i .

Theorem 2.1: The order of elimination in IESDS does not affect the final outcome.

Proof (Sketch): If si is strictly dominated by some strategy at some stage, it remains strictly
dominated in all subsequent stages, regardless of the order of elimination.

Theorem 2.2: If IESDS yields a unique strategy profile s∗ = (s∗
1, s∗

2, … , s∗
n), then s∗ is the

unique rational outcome of the game.

Example 2.2: Consider the following game:

L C R

U (3,3) (5,1) (8,3)

M (4,1) (0,5) (7,3)

D (4,0) (3,7) (9,9)

For player 1: M is dominated by a mixed strategy of 1
2 U + 1

2 D. For player 2: L is dominated
by R.

1. For each player, identify and eliminate all strictly dominated strategies
2. In the reduced game, identify and eliminate newly dominated strategies
3. Repeat until no more strategies can be eliminated



After elimination:

C R

U (5,1) (8,3)

D (3,7) (9,9)

Now, C is dominated by R for player 2. After elimination:

R

U (8,3)

D (9,9)

Finally, U is dominated by D for player 1, leaving (D, R) as the unique surviving strategy
profile.

Definition 2.7 (Rationalizable Strategies): A strategy si is rationalizable if it survives the
following procedure:

Formally, let R0
i = Si for all i ∈ N . For each k ≥ 1, define:

Rk
i = si ∈ Rk−1

i : ∃s−i ∈ ×j≠iR
k−1
j  such that si ∈ BRi(s−i)

where BRi(s−i) is the set of best responses of player i to s−i. The set of rationalizable
strategies is R∞

i = ∩∞
k=0R

k
i .

Theorem 2.3: In a finite game, a strategy is rationalizable if and only if it survives iterated
elimination of never best responses.

2.3 Best Response and Nash Equilibrium
Definition 2.8 (Best Response): A strategy s∗

i ∈ Si is a best response to strategies s−i if:

ui(s
∗
i , s−i) ≥ ui(si, s−i) ∀si ∈ Si

The set of best responses for player i to s−i is denoted as BRi(s−i):

BRi(s−i) = arg max
si∈Si

ui(si, s−i)

1. For each player, eliminate all strategies that are never best responses to some strategy
profile of the other players

2. In the reduced game, eliminate all strategies that are never best responses
3. Repeat until no more strategies can be eliminated



Definition 2.9 (Nash Equilibrium): A strategy profile s∗ = (s∗
1, s∗

2, … , s∗
n) is a Nash

equilibrium if for every player i ∈ N :

s∗
i ∈ BRi(s

∗
−i)

Equivalently, for all i ∈ N  and all si ∈ Si:

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i)

Properties of Nash Equilibrium:

Theorem 2.4: If s∗ is the unique strategy profile that survives IESDS, then s∗ is a Nash
equilibrium.

Proof: If s∗ is the unique survivor of IESDS, then s∗
i  is the only strategy in S∞

i  for all i. Since
any strategy that is not a best response to some strategy profile is strictly dominated, s∗

i

must be a best response to s∗
−i. Thus, s∗ is a Nash equilibrium.

Theorem 2.5: Every strictly dominated strategy is never a best response to any strategy
profile of the other players.

Proof: If si is strictly dominated by s′
i, then for all s−i, ui(s

′
i, s−i) > ui(si, s−i). Thus, si cannot

be a best response to any s−i.

Example 2.3 (Battle of the Sexes): Two players want to meet but have different
preferences over two locations. The payoff matrix is:

Opera (O) Football (F)

Opera (O) (2,1) (0,0)

Football (F) (0,0) (1,2)

This game has two pure-strategy Nash equilibria: (O, O) and (F, F).

2.4 Applications of Nash Equilibrium
Cournot Duopoly
Two firms (1 and 2) simultaneously choose production quantities q1 and q2. The market price
is P(Q) = a − Q where Q = q1 + q2 and a > 0. Each firm has constant marginal cost c where
0 < c < a.

1. A Nash equilibrium is self-enforcing: no player has an incentive to deviate unilaterally.
2. Not all games have a pure-strategy Nash equilibrium.
3. A game may have multiple Nash equilibria.
4. Nash equilibria may be Pareto inefficient.



The profit function for firm i is:

πi(q1, q2) = qi ⋅ (P(Q) − c) = qi ⋅ (a − q1 − q2 − c)

To find the Nash equilibrium, we compute the best response functions:

∂πi

∂qi
= a − c − 2qi − qj = 0

Solving, we get:

BRi(qj) =
a − c − qj

2

The Nash equilibrium is the intersection of the best response functions:

q∗
1 = q∗

2 =
a − c

3

With profits:

π∗
1 = π∗

2 =
(a − c)2

9

Bertrand Duopoly

Two firms simultaneously choose prices p1 and p2. Consumers buy from the firm with the
lower price, or split equally if prices are the same.

If pi < pj, firm i captures the entire market: qi = a − pi and qj = 0.

If pi = pj = p, the firms split the market: qi = qj = a−p
2 .

The profit function for firm i is:

πi(pi, pj) = {

The Nash equilibrium is:

p∗
1 = p∗

2 = c

With profits:

π∗
1 = π∗

2 = 0

This is the "Bertrand paradox": with just two firms, the competitive outcome is achieved.

Tragedy of the Commons

Consider n farmers sharing a common resource. Each farmer i decides how many units gi to
extract. The total extraction is G = ∑n

i=1 gi.

The value per unit extracted is v(G), which is decreasing in G. The cost per unit is constant
at c.

(pi − c)(a − pi) if pi < pj (pi − c) a−pi
2

if pi = pj 0 if pi > pj



The payoff for farmer i is:

ui(g1, … , gn) = gi ⋅ (v(G) − c)

To find the Nash equilibrium, we compute the first-order condition:

∂ui

∂gi
= v(G) + gi ⋅ v′(G) − c = 0

In a symmetric equilibrium, gi = G
n , so:

v(G∗) +
G∗

n
⋅ v′(G∗) = c

The socially optimal extraction would satisfy:

v(Gopt) + Gopt ⋅ v′(Gopt) = c

Since v′(G) < 0 and G∗

n
< G∗, we have G∗ > Gopt, leading to over-extraction of the resource.

2.5 Efficiency and Price of Anarchy
Definition 2.10 (Pareto Dominance): A strategy profile s′ Pareto dominates another profile s
if:

ui(s
′) ≥ ui(s) ∀i ∈ N

with strict inequality for at least one player.

Definition 2.11 (Pareto Efficiency): A strategy profile s is Pareto efficient if there is no other
strategy profile s′ that Pareto dominates s.

Definition 2.12 (Social Welfare): The social welfare of a strategy profile s is the sum of all
players' utilities:

SW(s) =
n

∑
i=1

ui(s)

Definition 2.13 (Socially Optimal Outcome): A strategy profile sopt is socially optimal if it
maximizes social welfare:

sopt ∈ arg max
s∈S

SW(s)

Definition 2.14 (Price of Anarchy): The price of anarchy (PoA) is the ratio of the social
welfare at the socially optimal outcome to the worst-case social welfare at any Nash
equilibrium:

PoA =
SW(sopt)

mins∈NE SW(s)

where NE is the set of Nash equilibria.



Definition 2.15 (Price of Stability): The price of stability (PoS) is the ratio of the social
welfare at the socially optimal outcome to the best-case social welfare at any Nash
equilibrium:

PoS =
SW(sopt)

maxs∈NE SW(s)

Example 2.4 (Prisoner's Dilemma): In the Prisoner's Dilemma, the unique Nash equilibrium
(D, D) with payoffs (-6, -6) is Pareto dominated by the profile (C, C) with payoffs (-1, -1). The
price of anarchy is:

PoA =
SW((C,C))

SW((D,D))
=

−1 + (−1)

−6 + (−6)
=

−2

−12
=

1

6

Example 2.5 (Pigou's Example): Consider a routing game with two parallel edges from s to
t. The upper edge has constant latency 1, and the lower edge has latency x, where x is the
flow on that edge.

The socially optimal solution is to route half the traffic on each edge, giving an average
latency of 1

2
⋅ 1 + 1

2
⋅ 1

2
= 3

4
.

However, in the Nash equilibrium, all traffic uses the lower edge, giving a latency of 1. The
price of anarchy is:

PoA =
1
3
4

=
4

3

2.6 Mixed Strategies
When players randomize over their pure strategies, we enter the domain of mixed strategies.

Definition 2.16 (Mixed Strategy): A mixed strategy σi for player i is a probability distribution
over Si. The set of all mixed strategies for player i is denoted by Δ(Si).

If Si = s1
i , s

2
i , … , ski , then σi = (σi(s1

i ),σi(s2
i ), … ,σi(ski )) where σi(s

j
i) ≥ 0 for all j and

∑k
j=1 σi(s

j
i) = 1.

Expected Utility: Given mixed strategy profile σ = (σ1,σ2, … ,σn), the expected utility for
player i is:

ui(σ) =∑
s∈S

(
n

∏
j=1

σj(sj))ui(s)

Definition 2.17 (Support): The support of a mixed strategy σi, denoted supp(σi), is the set
of pure strategies played with positive probability:

supp(σi) = si ∈ Si : σi(si) > 0

Definition 2.18 (Mixed Strategy Nash Equilibrium): A mixed strategy profile
σ∗ = (σ∗

1,σ∗
2, … ,σ∗

n) is a Nash equilibrium if for every player i ∈ N :



ui(σ
∗
i ,σ

∗
−i) ≥ ui(σi,σ

∗
−i) ∀σi ∈ Δ(Si)

Theorem 2.6 (Characterization of Mixed NE): A mixed strategy profile σ∗ is a Nash
equilibrium if and only if for all i ∈ N :

Proof:

Example 2.6 (Matching Pennies): Players simultaneously choose Heads (H) or Tails (T).
Player 1 wins if the choices match; player 2 wins if they differ.

H T

H (1,-1) (-1,1)

T (-1,1) (1,-1)

The unique Nash equilibrium is for both players to play σ∗
1 = σ∗

2 = (0.5, 0.5).

Example 2.7 (Battle of the Sexes - Mixed NE): In the Battle of the Sexes game from
Example 2.3, there is also a mixed-strategy Nash equilibrium where:

σ∗
1 = ( 2

3
,

1

3
) and σ∗

2 = ( 1

3
,

2

3
)

To verify, we check that each player is indifferent between their pure strategies given the
other player's mixed strategy:

For player 1:

For player 2:

1. For all si ∈ supp(σ∗
i ): ui(si,σ

∗
−i) = ui(σ

∗
i ,σ

∗
−i)

2. For all si ∉ supp(σ∗
i ): ui(si,σ

∗
−i) ≤ ui(σ

∗
i ,σ

∗
−i)

(⇒) If σ∗ is a Nash equilibrium and there exists si ∈ supp(σ∗
i ) with ui(si,σ∗

−i) < ui(σ∗
i ,σ

∗
−i)

, then player i could increase their expected utility by shifting probability from si to other
strategies, contradicting that σ∗ is a Nash equilibrium. Similarly, if there exists
si ∉ supp(σ∗

i ) with ui(si,σ∗
−i) > ui(σ∗

i ,σ
∗
−i), player i could increase their expected utility

by shifting probability to si.
(⇐) If conditions 1 and 2 hold, then for any mixed strategy σi:

ui(σi,σ
∗
−i) = ∑

si∈Si

σi(si)ui(si,σ
∗
−i) ≤ ∑

si∈Si

σi(si)ui(σ
∗
i ,σ

∗
−i) = ui(σ

∗
i ,σ

∗
−i)

Thus, σ∗ is a Nash equilibrium.

u1(O,σ∗
2) = 1

3 ⋅ 2 + 2
3 ⋅ 0 = 2

3

u1(F ,σ∗
2) = 1

3
⋅ 0 + 2

3
⋅ 1 = 2

3



Since both players are indifferent between their pure strategies, this mixed strategy profile is
a Nash equilibrium.

2.7 Nash Theorem
Theorem 2.7 (Nash, 1950): Every finite strategic-form game has at least one Nash
equilibrium (possibly in mixed strategies).

Proof (Sketch): The proof uses the Kakutani fixed-point theorem, applied to the best-
response correspondence.

Define the best-response correspondence BR : Δ(S) → 2Δ(S) where:
BR(σ) = BR1(σ−1) × BR2(σ−2) × … × BRn(σ−n)

A Nash equilibrium is a fixed point of this correspondence: σ∗ ∈ BR(σ∗).

By the Kakutani fixed-point theorem, BR has a fixed point, which is a Nash equilibrium.

Computing Nash Equilibria: Finding Nash equilibria is computationally hard (PPAD-
complete). For two-player games with two strategies each, we can find mixed equilibria
analytically:

Let p and q be the probabilities with which players 1 and 2 play their first strategies. In
equilibrium, each player must be indifferent between their pure strategies, leading to
equations: u1(s1

1, q) = u1(s2
1, q) u2(p, s1

2) = u2(p, s2
2)

Solving these equations gives the mixed Nash equilibrium.

Theorem 2.8 (Uniqueness of Completely Mixed NE): In a two-player game, if there is a
completely mixed Nash equilibrium (both players randomize over all their pure strategies),
then it is the unique completely mixed Nash equilibrium.

Proof (Sketch): In a completely mixed Nash equilibrium, each player is indifferent between
all their pure strategies. This gives a system of linear equations whose solution, if it exists, is
unique.

2.8 Potential Games

u2(σ∗
1,O) = 2

3
⋅ 1 + 1

3
⋅ 0 = 2

3

u2(σ∗
1,F) = 2

3 ⋅ 0 + 1
3 ⋅ 2 = 2

3

1. Δ(S) is non-empty, compact, and convex.
2. BR(σ) is non-empty for all σ ∈ Δ(S).
3. BR(σ) is convex for all σ ∈ Δ(S).
4. BR has a closed graph.



Definition 2.19 (Exact Potential Game): A game G is an exact potential game if there exists
a function Φ : S → R such that for every player i, every strategy profile s−i, and every pair of
strategies si, s′

i ∈ Si:

ui(si, s−i) − ui(s
′
i, s−i) = Φ(si, s−i) − Φ(s′

i, s−i)

Definition 2.20 (Weighted Potential Game): A game G is a weighted potential game if there
exists a function Φ : S → R and weights wi > 0 for each player i such that for every player i,
every strategy profile s−i, and every pair of strategies si, s′

i ∈ Si:

ui(si, s−i) − ui(s
′
i, s−i) = wi(Φ(si, s−i) − Φ(s′

i, s−i))

Definition 2.21 (Ordinal Potential Game): A game G is an ordinal potential game if there
exists a function Φ : S → R such that for every player i, every strategy profile s−i, and every
pair of strategies si, s′

i ∈ Si:

ui(si, s−i) − ui(s
′
i, s−i) > 0 ⟺ Φ(si, s−i) − Φ(s′

i, s−i) > 0

Properties of Potential Games:

Theorem 2.9: In a finite potential game, any sequence of strict best-response improvements
converges to a Nash equilibrium in a finite number of steps.

Proof (Sketch): Each strict best-response improvement increases the potential function.
Since the game is finite, the potential function has a maximum value, so the sequence must
terminate at a Nash equilibrium.

Examples of Potential Games:

1. Every potential game has at least one pure-strategy Nash equilibrium (the strategy
profile that maximizes the potential function).

2. The Nash equilibria of a potential game are the local maxima of the potential function.
3. Fictitious play converges to a Nash equilibrium in potential games.
4. Best-response dynamics converge to a Nash equilibrium in finite potential games.

1. Congestion Games: Consider a set of resources E and players choosing subsets of
resources. The cost of using a resource depends on the number of players using it. For
player i choosing resources si ⊆ E, the cost is:

ci(s1, … , sn) =∑
e∈si

ce(ne(s))

where ne(s) is the number of players using resource e in profile s.

The potential function is:

Φ(s) =∑
e∈E

ne(s)

∑
j=1

ce(j)



Theorem 2.10 (Monderer and Shapley, 1996): A game is an exact potential game if and
only if it is isomorphic to a congestion game.

3. Dynamic Games of Complete Information
3.1 Extensive Form Games
The extensive form represents a game as a tree, capturing the sequential nature of decision-
making.

Definition 3.1 (Extensive Form Game): An extensive form game consists of:

Components of an Extensive Form Game:

Definition 3.2 (Path): A path in the game tree is a sequence of nodes (x0,x1, … ,xk) such
that x0 is the root, xk is a terminal node, and for each j = 0, 1, … , k − 1, xj+1 is a successor
of xj.

Definition 3.3 (History): A history is a sequence of actions (a1, a2, … , ak) that lead from the
root to a particular node.

3.2 Information Sets and Strategies
Definition 3.4 (Information Set): An information set hi for player i is a set of decision nodes
such that:

2. Coordination Games: Players receive higher payoffs when choosing the same or
complementary actions.

3. Cournot Oligopoly with Linear Demand: The potential function is:

Φ(q1, … , qn) = (a − c)
n

∑
i=1

qi −
1

2
(

n

∑
i=1

qi)
2

−
1

2

n

∑
i=1

q2
i

1. A set of players N = 1, 2, … ,n

2. A game tree with nodes representing decision points and edges representing actions
3. A player function assigning each non-terminal node to a player
4. Information sets for each player
5. Payoffs for each player at each terminal node

Root: The starting node of the game
Terminal nodes: Nodes with no successors, where payoffs are assigned
Player function: Maps each non-terminal node to the player who moves at that node
Action set: The set of available actions at each decision node
Payoff function: Maps each terminal node to a vector of payoffs



Definition 3.5 (Perfect Information): A game has perfect information if every information
set is a singleton (i.e., at each decision point, the acting player knows exactly where they are
in the game tree).

Strategies in Extensive Form Games:

Definition 3.6 (Pure Strategy): A pure strategy si for player i is a complete contingent plan
that specifies an action at each of player i's information sets.

Let Hi be the set of all information sets for player i, and A(h) be the set of available actions
at information set h. Then:

si : Hi → ∪h∈Hi
A(h) such that si(h) ∈ A(h) for all h ∈ Hi

Definition 3.7 (Behavioral Strategy): A behavioral strategy βi for player i specifies a
probability distribution over the available actions at each of player i's information sets:

βi : Hi → ∪h∈Hi
Δ(A(h)) such that βi(h) ∈ Δ(A(h)) for all h ∈ Hi

Definition 3.8 (Perfect Recall): A game has perfect recall if no player forgets information
they once knew. Formally, for every player i, if nodes x and y are in the same information
set, then the sequences of player i's own actions leading to x and y must be the same.

Theorem 3.1 (Kuhn, 1953): In games with perfect recall, any mixed strategy can be
replaced by an equivalent behavioral strategy that yields the same expected payoffs.

Definition 3.9 (Strategy Profile): A strategy profile s = (s1, s2, … , sn) is a tuple of
strategies, one for each player.

Definition 3.10 (Outcome): The outcome of a strategy profile s is the terminal node reached
when all players follow their strategies in s.

Definition 3.11 (Equivalent Strategies): Two strategies si and s′
i for player i are equivalent

if for every profile s−i of the other players' strategies, the outcomes of (si, s−i) and (s′
i, s−i)

are the same.

3.3 Backward Induction and Subgame Perfect
Equilibrium
Definition 3.12 (Subgame): A subgame of an extensive form game is a subset of the game
tree starting at a single node (the root of the subgame) and containing all successor nodes,
such that if a node is in an information set, then all nodes in that information set are also in
the subgame.

1. All nodes in hi belong to player i
2. When the play reaches any node in hi, player i does not know which specific node in hi

has been reached
3. The available actions at all nodes in hi are the same



Backward Induction: A method for solving games of perfect information:

Definition 3.13 (Subgame Perfect Equilibrium, SPE): A strategy profile s∗ is a subgame
perfect equilibrium if it induces a Nash equilibrium in every subgame of the original game.

Theorem 3.2: Every finite extensive form game with perfect information has a subgame
perfect equilibrium, which can be found by backward induction.

Proof (Sketch):

Example 3.1 (Entry Deterrence): Firm 1 decides whether to enter a market (E) or stay out
(O). If firm 1 enters, firm 2 can either accommodate (A) or fight (F).

Payoffs:

The game has two Nash equilibria: (O, F) and (E, A). However, only (E, A) is subgame
perfect because (O, F) relies on a non-credible threat by firm 2 to fight if firm 1 enters.

Definition 3.14 (Credible Threat): A threat is credible if carrying it out is optimal for the
player making the threat when called upon to do so.

Theorem 3.3 (One-Stage Deviation Principle): A strategy profile s∗ is a subgame perfect
equilibrium if and only if no player can improve their payoff by deviating from s∗ at a single
decision node and then following s∗ at all other nodes.

Proof (Sketch):

1. Start at the terminal nodes and work backward
2. For each decision node, determine the optimal choice for the player who moves at that

node
3. Replace the subtree with the payoff resulting from optimal play
4. Continue until reaching the root

1. At each terminal node, the payoffs are fixed.
2. At each decision node, the player chooses the action that maximizes their payoff, given

the choices at all successor nodes.
3. This process yields a strategy profile where no player can improve their payoff by

deviating in any subgame.

(O): (0, 2)
(E, A): (1, 1)
(E, F): (-1, -1)

(⇒) If s∗ is a SPE, then no player can improve their payoff by any deviation, including a
one-stage deviation.



3.4 Minimax and Zero-Sum Games
Definition 3.15 (Zero-Sum Game): A two-player game is zero-sum if for any strategy profile
s:

u1(s) + u2(s) = 0

We can represent a zero-sum game with a single payoff matrix showing player 1's payoffs
(player 2's payoffs are the negatives of these values).

Definition 3.16 (Maxmin Value): The maxmin value for player i is:

vi = max
si∈Si

min
s−i∈S−i

ui(si, s−i)

It's the maximum payoff player i can guarantee regardless of what the other players do.

Definition 3.17 (Minmax Value): The minmax value for player i is:

v̄i = min
s−i∈S−i

max
si∈Si

ui(si, s−i)

It's the minimum payoff the other players can force on player i if they coordinate against i.

Theorem 3.4: In any game, vi ≤ v̄i for all players i.

Proof: Let s∗
i  be a strategy that achieves the maxmin value for player i:

vi = min
s−i∈S−i

ui(s
∗
i , s−i)

Then for any s−i ∈ S−i:

ui(s
∗
i , s−i) ≥ vi

But by definition of the maximum:

max
si∈Si

ui(si, s−i) ≥ ui(s
∗
i , s−i)

So for any s−i:

max
si∈Si

ui(si, s−i) ≥ vi

Taking the minimum over s−i:

min
s−i∈S−i

max
si∈Si

ui(si, s−i) ≥ vi

But this is precisely v̄i, so v̄i ≥ vi.

(⇐) If no player can improve their payoff by a one-stage deviation, then no player can
improve their payoff by any finite sequence of deviations, because any such sequence
can be broken down into a series of one-stage deviations. Since the game is finite, any
improvement plan must be finite, so s∗ is a SPE.



Theorem 3.5 (Minimax Theorem, von Neumann, 1928): In a two-player zero-sum game,
v1 = v̄1 = −v2 = −v̄2. This common value is called the value of the game.

Moreover, (s∗
1, s∗

2) is a Nash equilibrium if and only if:

s∗
1 ∈ arg max

s1

min
s2

u1(s1, s2)

and

s∗
2 ∈ arg max

s2

min
s1

u2(s1, s2)

Mixed Strategy Minimax: For mixed strategies, the maxmin value is:

vmi = max
σi∈Δ(Si)

min
σ−i∈Δ(S−i)

ui(σi,σ−i)

And the minmax value is:

v̄mi = min
σ−i∈Δ(S−i)

max
σi∈Δ(Si)

ui(σi,σ−i)

Theorem 3.6: In any finite game, vmi = v̄mi  for all players i.

Theorem 3.7: In a two-player zero-sum game, if (s∗
1, s∗

2) and (s′
1, s′

2) are both Nash equilibria,
then (s∗

1, s′
2) and (s′

1, s∗
2) are also Nash equilibria.

Computing Minimax: For a two-player zero-sum game, the minimax strategy can be
computed using linear programming.

For a payoff matrix A, player 1's problem is:

Maximize v Subject to:

Player 2's problem is:

Minimize w Subject to:

By the minimax theorem, v = w at the optimum.

3.5 Stackelberg Equilibrium
In a Stackelberg game, players move sequentially rather than simultaneously.

∑m
i=1 piAij ≥ v for all j = 1, 2, … ,n

∑m
i=1 pi = 1

pi ≥ 0 for all i = 1, 2, … ,m

∑n
j=1 Aijqj ≤ w for all i = 1, 2, … ,m

∑n
j=1 qj = 1

qj ≥ 0 for all j = 1, 2, … ,n



Definition 3.18 (Stackelberg Equilibrium): Consider a two-player game where player 1
(the leader) moves first, and player 2 (the follower) moves second. A strategy profile (s∗

1, s∗
2)

is a Stackelberg equilibrium if:

Theorem 3.8: The Stackelberg equilibrium can be found by backward induction:

Example 3.2 (Stackelberg Duopoly): In a Stackelberg duopoly, firm 1 (leader) chooses
output q1, and then firm 2 (follower) chooses output q2 after observing q1.

The best response function for firm 2 is:

BR2(q1) =
a − c − q1

2

Anticipating this, firm 1 chooses:

q∗
1 =

a − c

2

Which leads to:

q∗
2 =

a − c

4

With profits:

π∗
1 =

(a − c)2

8
and π∗

2 =
(a − c)2

16

First-Mover Advantage: In Stackelberg games, the leader often has an advantage. In the
Stackelberg duopoly:

π∗
1 =

(a − c)2

8
>

(a − c)2

9
= πCournot

1

Theorem 3.9: In a Stackelberg game with continuous action spaces and payoff functions
that are continuous and quasiconcave in own actions, a Stackelberg equilibrium always
exists.

3.6 Time Consistency
Time consistency relates to whether a player's optimal plan remains optimal as time passes.

1. s∗
2(s1) ∈ arg maxs2∈S2 u2(s1, s2) for all s1 ∈ S1 (best response of follower)

2. s∗
1 ∈ arg maxs1∈S1 u1(s1, s∗

2(s1)) (leader's optimal choice)

1. Determine the follower's best response function s∗
2(s1)

2. Substitute this into the leader's payoff function
3. Find the leader's optimal strategy s∗

1

4. The Stackelberg equilibrium is (s∗
1, s∗

2(s∗
1))



Definition 3.19 (Time Consistency): A plan is time-consistent if at each point in time, the
continuation of the original plan remains optimal.

Example 3.3 (Resource Allocation): A player has a fixed resource budget K = 1 to allocate
over three periods. The total payoff is a (possibly discounted) sum of stage payoffs:

v(x1,x2,x3) = u(x1) + δu(x2) + δ2u(x3)

where u(x) = log(1 + x) and δ ∈ (0, 1] is the discount factor.

The problem is:

max v(x1,x2,x3) subject to x1 + x2 + x3 = 1

If δ = 1 (no discounting), the optimal allocation is x∗
1 = x∗

2 = x∗
3 = 1

3 .

If δ = 0.8, the optimal allocation is:

x∗
1 = 0.6393,x∗

2 = 0.3115,x∗
3 = 0.0492

To check time consistency, we see if the planned allocations for periods 2 and 3 remain
optimal at the beginning of period 2.

At period 2, the player has 1 − x∗
1 resources left and maximizes:

w = u(x2) + δu(x3) subject to x2 + x3 = 1 − x∗
1

The first-order condition gives:

u′(x2)

u′(x3)
= δ

For u(x) = log(1 + x), this becomes:

1 + x3

1 + x2
= δ

With δ = 0.8 and x∗
1 = 0.6393, we get:

x2 = 0.3115,x3 = 0.0492

which matches the original plan.

Theorem 3.10: With exponential discounting (δt), optimal plans are time-consistent.

Theorem 3.11: With hyperbolic discounting (βδt for t ≥ 1, where β < 1), optimal plans are
generally time-inconsistent.

3.7 Multistage Games
Definition 3.20 (Multistage Game): A multistage game is a sequence of T  stage games,
where:



For a finite horizon multistage game with T  stages, the payoff for player i is:

Ui(s) =
T

∑
t=1

δt−1ut
i(s

t)

where δ ∈ (0, 1] is the discount factor, st is the strategy profile in stage t, and ut
i is player i's

stage utility in period t.

Definition 3.21 (History): A history ht at stage t is the sequence of realized action profiles in
previous stages:

ht = (a1, a2, … , at−1)

where ak is the action profile at stage k.

Definition 3.22 (Strategy in Multistage Games): A strategy si for player i in a multistage
game specifies an action at each stage as a function of the history:

sti : H t → At
i

where H t is the set of possible histories at stage t and At
i is the set of actions available to

player i at stage t.

Theorem 3.12: If the stage game has a unique Nash equilibrium s∗, then the unique
subgame perfect equilibrium of the finite horizon multistage game is to play s∗ in every
stage.

Proof: By backward induction, in the last stage T , the only equilibrium is to play s∗. Given
that, in stage T − 1, the only equilibrium is to play s∗, and so on.

Strategic Connection: If the stage game has multiple Nash equilibria, then strategies in
earlier stages can influence which equilibrium is played in later stages, potentially leading to
cooperation.

Example 3.4 (Prisoner's Dilemma with Reward/Punishment): Consider a two-stage game
where the first stage is a Prisoner's Dilemma and the second stage is a coordination game.

First stage:

C D

C (3,3) (0,4)

1. The same set of players participate in each stage
2. Players move simultaneously within each stage
3. Players observe the outcome of previous stages before making decisions in the current

stage
4. The overall payoff is a (possibly discounted) sum of stage payoffs



C D

D (4,0) (1,1)

Second stage (if both cooperated in the first stage):

A B

A (5,5) (0,0)

B (0,0) (0,0)

Second stage (otherwise):

A B

A (0,0) (0,0)

B (0,0) (1,1)

In the SPE, both players cooperate in the first stage and play A in the second stage, yielding
payoffs of (3+5, 3+5) = (8, 8).

3.8 Repeated Games
Definition 3.23 (Repeated Game): A repeated game is a multistage game where the same
stage game is played in every period.

For an infinitely repeated game with discount factor δ ∈ (0, 1), the payoff for player i is:

Ui(s) = (1 − δ)
∞

∑
t=1

δt−1ui(s
t)

where the factor (1 − δ) normalizes the payoffs to be comparable to single-stage payoffs.

Definition 3.24 (Trigger Strategy): A simple class of strategies in repeated games:

Definition 3.25 (Grim Trigger Strategy (GrT)): A specific trigger strategy:

Start by playing a cooperative action
Continue cooperating as long as others cooperate
If anyone deviates, switch to a punishment action forever after

Start by playing the cooperative action at t = 1

At stage t > 1, play the cooperative action if all players have played the cooperative
action in all previous stages; otherwise, play the Nash equilibrium of the stage game



Example 3.5 (Repeated Prisoner's Dilemma): In the one-shot Prisoner's Dilemma (where
the stage game payoffs are as in Example 3.4), the unique Nash equilibrium is (D, D). In the
infinitely repeated version, mutual cooperation (C, C) can be sustained as a subgame
perfect equilibrium using grim trigger strategies if δ is sufficiently high.

For player 1, the payoff from cooperation is:

U1(cooperate) = (1 − δ)
∞

∑
t=1

δt−1 ⋅ 3 = 3

The payoff from deviation is:

U1(deviate) = (1 − δ) ⋅ 4 + (1 − δ)
∞

∑
t=2

δt−1 ⋅ 1 = (1 − δ) ⋅ 4 + δ ⋅ 1 = 4 − 3δ

For cooperation to be a SPE, we need U1(cooperate) ≥ U1(deviate), which gives:

3 ≥ 4 − 3δ ⟹ δ ≥
1

3

Definition 3.26 (Tit-for-Tat Strategy): A strategy in repeated games where a player begins
by cooperating and then mimics the opponent's previous move.

Theorem 3.13: In infinitely repeated games with sufficiently patient players, Tit-for-Tat can
sustain cooperation as a subgame perfect equilibrium if the discount factor is sufficiently
high.

Theorem 3.14: In the infinitely repeated Prisoner's Dilemma, Tit-for-Tat is a subgame perfect
equilibrium if δ ≥ 1

2 .

3.9 The Folk Theorem
The Folk Theorem states that in infinitely repeated games with patient players, any
individually rational and feasible payoff can be sustained as a subgame perfect equilibrium.

Definition 3.27 (Feasible Payoff): A payoff vector v = (v1, v2, … , vn) is feasible if it's a
convex combination of payoffs from pure strategy profiles in the stage game.

Formally, v is feasible if there exist weights α(s) ≥ 0 for each strategy profile s ∈ S such that
∑s∈S α(s) = 1 and vi = ∑s∈S α(s)ui(s) for all i ∈ N .

Definition 3.28 (Individually Rational Payoff): A payoff vector v = (v1, v2, … , vn) is
individually rational if vi ≥ v̄i for all players i, where v̄i is player i's minmax value.

Theorem 3.15 (Folk Theorem): For any feasible and individually rational payoff vector v,
there exists δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1), there is a subgame perfect equilibrium of
the infinitely repeated game with discount factor δ that yields average payoff v.

Proof (Sketch):



Corollary 3.1: In the infinitely repeated Prisoner's Dilemma, any feasible payoff vector that
gives each player more than their minmax value (1) can be sustained as a subgame perfect
equilibrium for sufficiently high δ.

Extended Folk Theorem (Fudenberg and Maskin, 1986): For any feasible payoff vector v
with vi > v̄i for all i, there exists δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1), there is a subgame
perfect equilibrium of the infinitely repeated game with discount factor δ that yields average
payoff v.

3.10 Applications of Dynamic Games
Stackelberg Duopoly
As seen in Example 3.2, in a Stackelberg duopoly, the leader produces more and earns
higher profits than in a Cournot duopoly.

Dynamic Cournot with Collusion

In an infinitely repeated Cournot duopoly, firms can sustain collusion at the monopoly output
level:

q1 = q2 =
a − c

4

yielding profits:

π1 = π2 =
(a − c)2

8

This is sustainable if:

δ ≥
9
17

If δ < 9
17 , partial collusion may still be possible, with:

q∗ =
(a − c)(9 − 5δ)

3(9 − δ)

which increases from the Cournot quantity a−c
3  to the collusive quantity a−c

4  as δ increases
from 0 to 9

17 .

1. For each player i, define a punishment strategy profile pi such that ui(p
i) = v̄i.

2. Construct a strategy profile where:
Players follow a sequence of pure strategy profiles that yield average payoff v.
If any player i deviates, all players switch to pi for a finite number of periods, then
return to the original sequence.

3. For sufficiently high δ, the cost of punishment outweighs the gain from deviation.



Dynamic Bargaining

Definition 3.29 (Rubinstein Bargaining Model): Two players take turns making offers to
divide a pie of size 1. If an offer is accepted, the game ends. If an offer is rejected, the game
continues to the next period with discounting.

For discount factors δ1, δ2 ∈ (0, 1), the unique subgame perfect equilibrium division is:

x1 =
1 − δ2

1 − δ1δ2
, x2 =

δ2(1 − δ1)

1 − δ1δ2

where xi is player i's share.

In the special case where δ1 = δ2 = δ, this simplifies to:

x1 =
1

1 + δ
, x2 =

δ

1 + δ

As δ → 1, both players get equal shares: x1 = x2 = 1
2 .

Theorem 3.16 (Rubinstein, 1982): In the alternating-offers bargaining game, there is a
unique subgame perfect equilibrium where agreement is reached immediately.

4. Bayesian Games
4.1 Games with Incomplete Information
In games with incomplete information, some players have private information that others do
not have.

Definition 4.1 (Bayesian Game): A Bayesian game consists of:

Definition 4.2 (Common Prior Assumption): All players share the same prior beliefs about
the distribution of types. This is common knowledge among the players.

Harsanyi Transformation: Harsanyi proposed transforming games of incomplete
information into games of imperfect information by introducing Nature as a player who
moves first and chooses the types of all players according to the prior probability distribution.

Private Values vs. Common Values:

1. A set of players N = 1, 2, … ,n

2. A set of possible types Ti for each player i
3. A common prior probability distribution p over types T = T1 × T2 × … × Tn

4. A set of actions Ai for each player i
5. A utility function ui : A × T → R for each player i, where A = A1 × A2 × … × An

Private Values: Each player's utility depends only on their own type: ui(a, t) = ui(a, ti)



Example 4.1 (First-Price Auction with Private Values): Two bidders have private
valuations v1 and v2 drawn independently from a uniform distribution on [0, 1]. Each bidder
submits a sealed bid, and the highest bidder gets the object and pays their bid.

This is a Bayesian game where:

4.2 Types and Beliefs
Types: A player's type ti ∈ Ti represents their private information. This could be:

Beliefs: Given a prior distribution p over type profiles, player i with type ti has beliefs about
other players' types given by the conditional distribution:

p(t−i|ti) =
p(ti, t−i)

p(ti)

where p(ti) = ∑t−i∈T−i
p(ti, t−i).

Independent Types: Types are independent if p(t) = ∏n
i=1 p(ti) for all t ∈ T .

Example 4.2 (Independent Types): If types are independent, then:

p(t−i|ti) = p(t−i) =∏
j≠i

p(tj)

Example 4.3 (Correlated Types): Consider a two-player game where each player's type is
either H or L, with joint distribution:

p(H,H) = 0.4, p(H,L) = 0.1, p(L,H) = 0.1, p(L,L) = 0.4

Player 1's beliefs about player 2's type are:

p(t2 = H|t1 = H) =
p(H,H)

p(t1 = H)
=

0.4

0.5
= 0.8

p(t2 = L|t1 = H) =
p(H,L)

p(t1 = H)
=

0.1

0.5
= 0.2

Common Values: A player's utility may depend on other players' types

N = 1, 2

Ti = [0, 1] for i ∈ 1, 2

p(v1, v2) = 1 for (v1, v2) ∈ [0, 1]2

Ai = [0, ∞) for i ∈ 1, 2

ui(b1, b2, v1, v2) = {vi − bi if bi > bj 
vi−bi

2 if bi = bj 0 if bi < bj

Their payoff function
Their available actions
Their beliefs about other players' types



p(t2 = H|t1 = L) =
p(L,H)

p(t1 = L)
=

0.1
0.5

= 0.2

p(t2 = L|t1 = L) =
p(L,L)

p(t1 = L)
=

0.4

0.5
= 0.8

4.3 Bayesian Nash Equilibrium
Definition 4.3 (Strategy in Bayesian Games): A pure strategy for player i is a function
si : Ti → Ai that specifies an action for each possible type.

Definition 4.4 (Bayesian Nash Equilibrium): A strategy profile s∗ = (s∗
1, s∗

2, … , s∗
n) is a

Bayesian Nash Equilibrium (BNE) if for each player i, each type ti ∈ Ti, and each alternative
action ai ∈ Ai:

∑
t−i∈T−i

p(t−i|ti)ui(s
∗
i (ti), s∗

−i(t−i), ti, t−i) ≥ ∑
t−i∈T−i

p(t−i|ti)ui(ai, s
∗
−i(t−i), ti, t−i)

This means that for each type ti, player i's strategy maximizes their expected utility given
their beliefs about other players' types and assuming other players follow their equilibrium
strategies.

Theorem 4.1: Every finite Bayesian game has at least one Bayesian Nash equilibrium
(possibly in mixed strategies).

Proof (Sketch): A Bayesian game can be converted to a normal form game where each
player's strategy space is the set of functions from types to actions. The Nash theorem then
guarantees the existence of a Nash equilibrium.

Example 4.4 (Double Auction): A seller and a buyer have private valuations vs and vb for an
object, drawn independently from uniform distributions on [0, 1]. The seller submits an ask
price a, and the buyer submits a bid price b. If b ≥ a, trade occurs at price p = a+b

2 .

In a Bayesian Nash equilibrium, the seller's strategy is a(vs) = 2vs+1
3  and the buyer's strategy

is b(vb) = 2vb
3 .

4.4 Applications of Bayesian Nash Equilibrium
First-Price Sealed-Bid Auction
In a first-price sealed-bid auction with independent private values drawn from a uniform
distribution on [0, 1], the Bayesian Nash equilibrium bidding strategy for player i with value vi
is:

bi(vi) =
n − 1

n
vi

where n is the number of bidders.



Proof (Sketch): Assume all other bidders follow the strategy bj(vj) = αvj for some α ∈ (0, 1).
The probability that bidder i wins with bid bi is:

Pr(win with bid bi) = Pr(bi > max
j≠i

bj) = Pr( bi

α
> max

j≠i
vj) = ( bi

α
)

n−1

The expected utility is:

E[ui] = (vi − bi) Pr(win with bid bi) = (vi − bi)(
bi

α
)

n−1

Taking the derivative with respect to bi and setting it to zero:

dE[ui]

dbi
= −( bi

α
)

n−1

+ (vi − bi)
n − 1
α

( bi

α
)

n−2

= 0

Solving for bi:

bi =
n − 1

n
vi

So α = n−1
n

, which confirms our assumption.

Cournot Duopoly with Incomplete Information

Consider a Cournot duopoly where firm i has marginal cost ci which is private information.
The costs are independently drawn from a uniform distribution on [0, 1].

The inverse demand function is P(Q) = a − Q where Q = q1 + q2.

In a Bayesian Nash equilibrium, firm i with cost ci produces:

qi(ci) =
2a − 3ci + 1

6

4.5 Signaling Games
Definition 4.5 (Signaling Game): A signaling game is a two-player Bayesian game where:

Definition 4.6 (Belief System): A belief system μ specifies, for each message m ∈ M, a
probability distribution μ(⋅|m) over the sender's types.

Types of Equilibria in Signaling Games:

1. Player 1 (the sender) has private information represented by their type t1 ∈ T1

2. Player 1 sends a message m ∈ M to player 2
3. Player 2 (the receiver) observes the message (but not the type) and takes an action

a ∈ A

4. Payoffs depend on the type, message, and action: u1(t1,m, a) and u2(t1,m, a)



Example 4.5 (Job Market Signaling): A worker knows their productivity (high or low) but the
firm does not. The worker can choose to get education (which is costly but less costly for
high-productivity workers) before applying for a job. The firm observes the worker's
education level and sets a wage.

Types: T1 = H,L with prior p(H) = p(L) = 0.5. Messages: M = E,N  (education or no
education). Actions: A = R+ (wage). Payoffs:

In a separating equilibrium:

Theorem 4.2: In a signaling game with finite types and messages, if the single-crossing
property holds, then there exists a separating equilibrium.

4.6 Perfect Bayesian Equilibrium
Definition 4.7 (Perfect Bayesian Equilibrium, PBE): A PBE consists of:

such that:

Sequential Rationality: For each player i and each information set hi, the strategy s∗
i

maximizes player i's expected payoff given the beliefs μ(hi) and the strategies s∗
−i of the

other players.

1. Separating Equilibrium: Different types of sender choose different messages, fully
revealing their types

2. Pooling Equilibrium: All types of sender choose the same message, revealing no
information

3. Semi-Separating/Hybrid Equilibrium: Some types mix between different messages,
partially revealing information

u1(t1,m, a) = a − c(t1,m) where c(H,E) = 1, c(L,E) = 2, c(H,N) = c(L,N) = 0.
u2(t1,m, a) = t1 − a where H = 2 and L = 1.

High-type worker chooses education: s1(H) = E

Low-type worker chooses no education: s1(L) = N

Firm offers wage 2 to educated workers: s2(E) = 2

Firm offers wage 1 to uneducated workers: s2(N) = 1

Beliefs: μ(H|E) = 1, μ(H|N) = 0

1. A strategy profile s∗

2. A belief system μ that specifies, for each information set, a probability distribution over
the nodes in that information set

1. The strategy profile s∗ is sequentially rational given beliefs μ
2. The beliefs μ are derived from s∗ using Bayes' rule whenever possible



Bayes' Rule Requirement: For information sets that are reached with positive probability
under s∗, the beliefs μ must be consistent with s∗ and the prior using Bayes' rule.

Example 4.6 (Entry Deterrence with Incomplete Information): Consider a market entry
game where an entrant (player 1) decides whether to enter a market. The incumbent (player
2) can be either strong (with low costs) or weak (with high costs). The incumbent's type is
private information, with prior probability p of being strong. If the entrant enters, the
incumbent decides whether to fight or accommodate.

Types: T2 = S,W  with prior p(S) = p, p(W) = 1 − p. Actions: A1 = E,O (enter or out),
A2 = F ,A (fight or accommodate). Payoffs:

In a PBE, the strong incumbent always fights, and the weak incumbent always
accommodates. The entrant enters if p < 2

3  and stays out if p > 2
3 .

Theorem 4.3 (One-Shot Deviation Principle for PBE): A strategy profile s∗ and belief
system μ constitute a PBE if and only if no player can profit by deviating from s∗ at a single
information set and then following s∗ at all other information sets, given the beliefs μ.

4.7 Reputation Building
Reputation Model: Consider a finitely repeated game where:

Example 4.7 (Chain Store Paradox): A monopolist faces potential entrants in a sequence of
markets. The monopolist could be "tough" (always fights entry) or "strategic" (chooses the
best response). By fighting early entrants, a strategic monopolist can build a reputation for
being tough, deterring future entrants.

Theorem 4.4 (Reputation Effects, Kreps and Wilson, 1982): In finitely repeated games
with one-sided incomplete information and sufficiently patient players, if there is a small
probability that one player is committed to a specific strategy, that player can guarantee
themselves a payoff close to what they would get if they were known to be committed to that
strategy.

Example 4.8 (Reputation in the Prisoner's Dilemma): Consider a finitely repeated
Prisoner's Dilemma where player 1 may be either a rational player or a "grim trigger" player

u1(O, t2, ⋅) = 0 for all t2

u1(E,S,F) = −1, u1(E,S,A) = 2, u1(E,W ,F) = 1, u1(E,W ,A) = 2

u2(O,S, ⋅) = u2(O,W , ⋅) = 2

u2(E,S,F) = 1, u2(E,S,A) = 0, u2(E,W ,F) = −1, u2(E,W ,A) = 0

1. One player may be of different types (e.g., rational or "committed" to a specific strategy)
2. The other player has uncertainty about this player's type
3. The player with private information can build a reputation by mimicking a committed type



who starts with cooperation and then cooperates if and only if the opponent has never
defected.

If player 2 assigns probability p > 0 to player 1 being a grim trigger, then in a game with T
stages where T  is large, both players cooperate until near the end of the game.

Theorem 4.5 (Fudenberg and Levine, 1989): In an infinitely repeated game with
incomplete information where one long-run player faces a sequence of short-run players, if
the long-run player is sufficiently patient, they can guarantee themselves a payoff close to
their Stackelberg payoff (the payoff they would receive if they could commit to a strategy and
the short-run players best-responded).

4.8 Bayesian Cooperative Games
Bayesian cooperative games extend the concept of coalitional games to settings with
incomplete information.

Definition 4.8 (Bayesian Cooperative Game): A Bayesian cooperative game consists of:

Example 4.9 (Study Group Problem): Two students with abilities t1, t2 ∈ [0, 1] can work
together on a project. The project succeeds if at least one student puts in effort. The value of
success to student i is t2

i . The cost of effort is a constant c.

If student i puts in effort, their payoff is t2
i − c regardless of what the other student does. If

student i doesn't put in effort, their payoff is t2
i  if the other student puts in effort, and 0

otherwise.

In a Bayesian Nash equilibrium, student i puts in effort if and only if ti ≥ √c when working
alone. When working together, student i puts in effort if and only if ti ≥√ c

1−Pr[sj(tj)=E]
, where

Pr[sj(tj) = E] is the probability that the other student puts in effort.

Under uniform priors and with symmetric strategies, the equilibrium threshold is ti ≥ 3√c.

Definition 4.9 (Ex-Ante/Interim/Ex-Post Core): In a Bayesian cooperative game:

1. A set of players N = 1, 2, … ,n

2. A set of possible types Ti for each player i
3. A common prior probability distribution p over types T = T1 × T2 × … × Tn

4. A characteristic function v : 2N × T → R that assigns a value to each coalition and type
profile

1. Ex-Ante Core: Allocations that cannot be blocked by any coalition before types are
realized

2. Interim Core: Allocations that cannot be blocked by any coalition after each player
learns their own type



Theorem 4.6: The ex-post core is contained in the interim core, which is contained in the ex-
ante core.

Theorem 4.7: If the characteristic function v is superadditive and convex for each type
profile, then the ex-ante core is non-empty.

5. Advanced Topics
5.1 Auctions
Definition 5.1 (Auction): A mechanism for selling an item to one of several bidders.

Common Auction Formats:

Valuation Models:

Theorem 5.1 (Revenue Equivalence): Under the independent private values model with
risk-neutral bidders drawn from the same distribution, any auction mechanism that allocates
the item to the highest bidder and gives zero expected payoff to a bidder with the lowest
possible valuation yields the same expected revenue.

Proof (Sketch): Consider any auction mechanism that satisfies the conditions. Let P(v) be
the expected payment by a bidder with valuation v, and let W(v) be the probability that the
bidder wins the auction. By incentive compatibility:

v ∈ arg max
v′

vW(v′) − P(v′)

Taking the first-order condition:

3. Ex-Post Core: Allocations that cannot be blocked by any coalition after all types are
realized

1. First-Price Sealed-Bid Auction: Bidders submit sealed bids; highest bidder wins and
pays their bid

2. Second-Price Sealed-Bid Auction (Vickrey): Bidders submit sealed bids; highest
bidder wins and pays the second-highest bid

3. English Auction (Ascending-Price): Price increases until only one bidder remains
4. Dutch Auction (Descending-Price): Price decreases until a bidder accepts the current

price

1. Independent Private Values: Each bidder's valuation is drawn independently from a
distribution, and bidders know their own valuations but not others'.

2. Common Value: The item has the same value to all bidders, but bidders have different
information about this value.

3. Interdependent Values: Bidders' valuations depend on both their own information and
others' information.



vW ′(v′) − P ′(v′) = 0 at v′ = v

So:

P ′(v) = vW ′(v)

Integrating:

P(v) = P(0) + ∫
v

0

tW ′(t)dt = P(0) + vW(v) − ∫
v

0

W(t)dt

Since the lowest-value bidder pays zero in expectation, P(0) = 0. Thus:

P(v) = vW(v) − ∫
v

0

W(t)dt

This formula holds for any auction mechanism satisfying the conditions, so all such
mechanisms yield the same expected payment for each bidder type, and hence the same
expected revenue.

Example 5.1 (Second-Price Auction): In a second-price auction, bidding truthfully (i.e.,
bidding one's true valuation) is a weakly dominant strategy.

Proof: Let vi be bidder i's valuation, and let bi be their bid. Let b∗
−i = maxj≠i bj be the highest

bid among other bidders.

Case 1: vi > b∗
−i. If bi > b∗

−i, bidder i wins and pays b∗
−i, for a payoff of vi − b∗

−i. If bi < b∗
−i,

bidder i loses and gets a payoff of 0. Since vi − b∗
−i > 0, bidding bi = vi is better than bidding

bi < b∗
−i.

Case 2: vi < b∗
−i. If bi > b∗

−i, bidder i wins and pays b∗
−i, for a payoff of vi − b∗

−i. If bi < b∗
−i,

bidder i loses and gets a payoff of 0. Since vi − b∗
−i < 0, bidding bi = vi is better than bidding

bi > b∗
−i.

Case 3: vi = b∗
−i. Bidder i is indifferent between winning and losing, so any bid is optimal.

Thus, bidding bi = vi is a weakly dominant strategy.

Example 5.2 (First-Price Auction): In a first-price auction with n bidders whose valuations
are drawn independently from a uniform distribution on [0, 1], the Bayesian Nash Equilibrium
bidding strategy is b(v) = n−1

n v.

Winner's Curse: In common value auctions, the winner tends to be the bidder who most
overestimates the value, leading to negative expected profits.

Definition 5.2 (All-Pay Auction): An auction where all bidders pay their bids, but only the
highest bidder receives the item.

5.2 Mechanism Design



Definition 5.3 (Mechanism Design): The study of how to design games or institutions that
achieve desired outcomes when players act strategically.

Components of a Mechanism:

Definition 5.4 (Direct Mechanism): A mechanism where Mi = Ti for all i (players report
their types directly).

Definition 5.5 (Incentive Compatibility): A direct mechanism is incentive compatible if
truthfully reporting one's type is a Bayesian Nash Equilibrium.

Definition 5.6 (Dominant Strategy Incentive Compatible/Strategy-Proof): A direct
mechanism is strategy-proof if truthfully reporting one's type is a weakly dominant strategy.

Definition 5.7 (Efficiency): A mechanism is efficient if it maximizes the sum of players'
utilities.

Definition 5.8 (Individual Rationality): A mechanism is individually rational if each player's
expected utility from participating is at least as high as their expected utility from not
participating.

5.3 Revelation Principle
Theorem 5.2 (Revelation Principle for Dominant Strategies): For any mechanism and
dominant strategy equilibrium of that mechanism, there exists a strategy-proof direct
mechanism that yields the same outcome.

Proof (Sketch): Let (M, g) be a mechanism and let s∗ be a dominant strategy equilibrium of
that mechanism. Define a direct mechanism (T ,h) where h(t) = g(s∗(t)) for all t ∈ T . Then
truthful reporting is a dominant strategy in (T ,h).

Theorem 5.3 (Revelation Principle for BNE): For any mechanism and Bayesian Nash
Equilibrium of that mechanism, there exists an incentive-compatible direct mechanism that
yields the same outcome.

Proof (Sketch): Let (M, g) be a mechanism and let s∗ be a BNE of that mechanism. Define
a direct mechanism (T ,h) where h(t) = g(s∗(t)) for all t ∈ T . Then truthful reporting is a BNE
in (T ,h).

Theorem 5.4 (Gibbard-Satterthwaite): If there are at least three possible outcomes, any
strategy-proof social choice function that is onto (i.e., every outcome is chosen for some

1. A set of possible outcomes X
2. A set of possible types Ti for each player i
3. A utility function ui(x, ti) for each player i, where x ∈ X and ti ∈ Ti

4. A mechanism (M, g) where M = M1 × M2 × … × Mn is a message space and
g : M → X is an outcome function



preference profile) must be dictatorial.

Definition 5.9 (Dictatorial Mechanism): A mechanism is dictatorial if there is a player
whose preferred outcome is always chosen.

Example 5.3 (Vickrey-Clarke-Groves (VCG) Mechanism): The VCG mechanism is a direct
mechanism where:

Theorem 5.5: The VCG mechanism is strategy-proof and efficient.

Proof (Sketch): For efficiency, note that the mechanism explicitly chooses the outcome that
maximizes the sum of reported valuations.

For strategy-proofness, consider player i's utility when reporting truthfully versus reporting v′
i:

When reporting truthfully, player i's utility is:

ui = vi(x
∗) − pi = vi(x

∗) −(max
x∈X

∑
j≠i

vj(x) −∑
j≠i

vj(x
∗))

= vi(x
∗) +∑

j≠i

vj(x
∗) − max

x∈X
∑
j≠i

vj(x)

=
n

∑
j=1

vj(x
∗) − max

x∈X
∑
j≠i

vj(x)

When reporting v′
i, the mechanism chooses x′ to maximize v′

i(x) + ∑j≠i vj(x). Player i's
utility is:

u′
i = vi(x

′) − p′
i = vi(x

′) −(max
x∈X

∑
j≠i

vj(x) −∑
j≠i

vj(x
′))

= vi(x
′) +∑

j≠i

vj(x
′) − max

x∈X
∑
j≠i

vj(x)

=
n

∑
j=1

vj(x
′) − max

x∈X
∑
j≠i

vj(x)

Since x∗ maximizes ∑n
j=1 vj(x), we have ∑n

j=1 vj(x
∗) ≥ ∑n

j=1 vj(x
′), so ui ≥ u′

i.

1. Players report their valuations vi(x) for each outcome x ∈ X

2. The mechanism chooses the outcome x∗ that maximizes the sum of reported valuations:
x∗ ∈ arg maxx∈X∑

n
i=1 vi(x)

3. Each player i pays a "pivotal payment" equal to the reduction in others' welfare caused
by their presence:

pi = max
x∈X

∑
j≠i

vj(x) −∑
j≠i

vj(x
∗)



Definition 5.10 (Budget Balance): A mechanism is budget-balanced if the sum of payments
is zero: ∑n

i=1 pi = 0.

Theorem 5.6 (Myerson-Satterthwaite): In a bilateral trading problem with private values
and continuous type spaces, no mechanism can be simultaneously efficient, incentive
compatible, individually rational, and budget-balanced.

5.4 Coalitional Games
Definition 5.11 (Coalitional Game with Transferable Utility): A pair (N , v) where:

The value v(S) represents the total payoff that coalition S can secure for itself.

Definition 5.12 (Superadditive Game): A game is superadditive if for all disjoint coalitions
S,T ⊆ N :

v(S ∪ T ) ≥ v(S) + v(T )

Definition 5.13 (Convex Game): A game is convex if for all coalitions S,T ⊆ N :

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

Definition 5.14 (Imputation): An imputation is a payoff vector x = (x1,x2, … ,xn) satisfying:

Definition 5.15 (Core): The core of a coalitional game (N , v) is the set of imputations x such
that ∑i∈S xi ≥ v(S) for all coalitions S ⊆ N .

Theorem 5.7: A superadditive and convex game has a non-empty core.

Theorem 5.8 (Bondareva-Shapley): A coalitional game has a non-empty core if and only if
it is balanced.

Definition 5.16 (Balanced Game): A game is balanced if for any balanced collection of
weights aSS∈2N∖∅ (i.e., for all i ∈ N , ∑S:i∈S aS = 1), we have ∑S∈2N∖∅ aSv(S) ≤ v(N).

Definition 5.17 (Shapley Value): The Shapley value ϕ allocates to each player i the
amount:

ϕi(v) = ∑
S⊆N∖i

|S|!, (n − |S| − 1)!

n!
[v(S ∪ i) − v(S)]

Properties of the Shapley Value:

1. N = 1, 2, … ,n is a set of players
2. v : 2N → R is a characteristic function with v(∅) = 0

1. Efficiency: ∑n
i=1 xi = v(N)

2. Individual rationality: xi ≥ v(i) for all i ∈ N



Theorem 5.9: The Shapley value is the unique payoff vector satisfying the properties of
efficiency, symmetry, dummy player, and additivity.

Example 5.4 (Voting Game): In a weighted voting game, player i has weight wi, and a
coalition S can pass a proposal if the sum of weights exceeds a threshold q:

v(S) = {

The Shapley value of player i represents their power in this voting system, also known as
the Shapley-Shubik power index.

Definition 5.18 (Non-Transferable Utility (NTU) Game): A pair (N ,V ) where:

Definition 5.19 (Core of an NTU Game): The core of an NTU game (N ,V ) is the set of
payoff vectors x ∈ V (N) such that there is no coalition S and payoff vector y ∈ V (S) with
yi > xi for all i ∈ S.

5.5 Nash Bargaining
Definition 5.20 (Nash Bargaining Problem): A pair (S, d) where:

Definition 5.21 (Nash Bargaining Solution): The Nash bargaining solution is the point
s∗ ∈ S that maximizes the Nash product:

(s1 − d1)(s2 − d2)

subject to s1 ≥ d1 and s2 ≥ d2.

Nash's Axioms:

1. Efficiency: ∑n
i=1 ϕi(v) = v(N)

2. Symmetry: If v(S ∪ i) = v(S ∪ j) for all S ⊆ N ∖ i, j, then ϕi(v) = ϕj(v)

3. Dummy player: If v(S ∪ i) = v(S) for all S ⊆ N ∖ i, then ϕi(v) = 0

4. Additivity: ϕi(v + w) = ϕi(v) + ϕi(w) for all games v,w

1 if ∑i∈S wi ≥ q 0 otherwise

1. N = 1, 2, … ,n is a set of players
2. V  is a function that assigns to each coalition S ⊆ N  a set V (S) ⊆ R|S| of feasible payoff

vectors

1. S ⊆ R2 is a compact, convex set of feasible utility pairs
2. d ∈ S is the disagreement point

1. Pareto Efficiency: If s ∈ S and there exists t ∈ S with t ≥ s and t ≠ s, then t is the
solution.

2. Symmetry: If S is symmetric around the line s1 = s2 and d1 = d2, then s∗
1 = s∗

2.
3. Independence of Irrelevant Alternatives: If S ⊆ T  and the solution to (T , d) is in S,

then it is also the solution to (S, d).



Theorem 5.10 (Nash, 1950): The Nash bargaining solution is the unique solution satisfying
the four axioms.

Proof (Sketch): First, show that the Nash product maximizer satisfies all four axioms. Then,
show that any solution satisfying the four axioms must be the Nash product maximizer.

For the first part, Pareto efficiency follows from the fact that increasing one player's utility
while holding the other's constant increases the Nash product. Symmetry follows from the
symmetry of the Nash product. IIA follows because if the Nash product maximizer in T  is in S
, then it must also maximize the Nash product in S. Scale invariance follows because the
Nash product transforms monotonically under positive affine transformations.

For the second part, consider any solution f satisfying the four axioms. By scale invariance,
we can normalize the problem so that d = (0, 0) and f(S, d) = (1, 1). By symmetry and
Pareto efficiency, f must select (1, 1) in the symmetric case. By IIA, f must select the Nash
product maximizer in general.

Example 5.5 (Nash Bargaining for Resource Allocation): Two players need to divide a
resource of size 1. The utility of player i from receiving xi is ui(xi). The disagreement point
is (0, 0).

The Nash bargaining solution maximizes u1(x1) ⋅ u2(1 − x1). The first-order condition is:

u′
1(x1) ⋅ u2(1 − x1) = u1(x1) ⋅ u′

2(1 − x1)

If ui(xi) = x
αi

i , then the solution is:

x1 =
α1

α1 + α2

Kalai-Smorodinsky Solution: An alternative to the Nash bargaining solution that replaces
the IIA axiom with monotonicity. It lies at the intersection of the Pareto frontier with the line
connecting the disagreement point to the "ideal point" (where each player gets their
maximum possible utility).

Definition 5.22 (Kalai-Smorodinsky Solution): Given a bargaining problem (S, d) and the
ideal point i = (s̄1, s̄2) where s̄j = max sj : (s1, s2) ∈ S, s1 ≥ d1, s2 ≥ d2 for j = 1, 2, the Kalai-
Smorodinsky solution is the point s∗ ∈ S on the Pareto frontier such that:

s∗
1 − d1

s̄1 − d1
=

s∗
2 − d2

s̄2 − d2

5.6 Cheap Talk
Definition 5.23 (Cheap Talk): Communication between players that does not directly affect
payoffs.

4. Scale Invariance: For positive affine transformations, the solution transforms
accordingly.



Crawford-Sobel Model:

The sender's utility is US(a, θ, b) = −(a − (θ + b))2, and the receiver's utility is
UR(a, θ) = −(a − θ)2, where b > 0 is the sender's bias.

Results:

Theorem 5.11 (Crawford-Sobel, 1982): In the cheap talk game, all equilibria are partition
equilibria, where the state space is divided into intervals, and the sender reveals only which
interval the state belongs to.

Example 5.6 (Legislative Committees): A legislator (receiver) relies on a committee
(sender) with specialized knowledge to propose policies. The committee has a bias b relative
to the legislator. The state space θ ∈ [−w,w] is uniformly distributed.

If b ≤ w/2, there is an informative equilibrium where the committee reveals whether θ is in
[−w, 0] or [0,w].

Applications of Cheap Talk:

5.7 Algorithmic Game Theory
Definition 5.24 (Algorithmic Game Theory): The study of computational aspects of game
theory, including the complexity of finding equilibria and the design of algorithms for strategic
settings.

Complexity Classes:

1. A sender has private information about a state θ ∈ [0, 1]

2. The sender sends a message m to a receiver
3. The receiver takes an action a ∈ R

4. Payoffs depend on the state and action but not on the message

1. If the sender and receiver have aligned preferences (b = 0), full information revelation is
possible.

2. If their preferences differ by a small amount (b > 0 but small), partial information
revelation is possible (partition equilibria).

3. If their preferences differ significantly (large b), no information revelation is possible
(babbling equilibrium).

1. Political communication
2. Expert advice
3. Organizational communication
4. Negotiation and mediation

1. P: Problems solvable in polynomial time



Theorem 5.12 (Daskalakis, Goldberg, Papadimitriou, 2006): Finding a Nash equilibrium in
a normal-form game with three or more players is PPAD-complete.

Theorem 5.13 (Chen and Deng, 2006): Finding a Nash equilibrium in a two-player normal-
form game is PPAD-complete.

Definition 5.25 (ϵ-Nash Equilibrium): A strategy profile s is an ϵ-Nash equilibrium if no
player can improve their payoff by more than ϵ by unilaterally deviating:

ui(si, s−i) ≥ ui(s
′
i, s−i) − ϵ ∀i ∈ N , ∀s′

i ∈ Si

Theorem 5.14 (Lipton, Markakis, Mehta, 2003): For any game and any ϵ > 0, there exists
an ϵ-Nash equilibrium with support size O(logn/ϵ2), where n is the number of players.

Algorithmic Mechanism Design: The study of how to design mechanisms that are both
economically sound and computationally efficient.

Definition 5.26 (Communication Complexity): The minimum number of bits that need to
be exchanged to compute a function whose inputs are distributed among multiple parties.

Theorem 5.15 (Nisan and Segal, 2006): Implementing an efficient allocation in a
combinatorial auction requires exponential communication in the number of items.

5.8 Fictitious Play and Learning in Games
Definition 5.27 (Fictitious Play): A learning process where each player best responds to
the empirical distribution of others' past actions.

Formally, let f t
i (sj) be the frequency with which player j has played strategy sj up to time t.

At time t + 1, player i chooses:

st+1
i ∈ arg max

si∈Si

∑
s−i∈S−i

(∏
j≠i

f t
j (sj))ui(si, s−i)

Theorem 5.16 (Robinson, 1951): In a zero-sum game, the empirical distributions of play in
fictitious play converge to the set of Nash equilibria.

Theorem 5.17 (Monderer and Shapley, 1996): In a potential game, the empirical
distributions of play in fictitious play converge to the set of Nash equilibria.

Definition 5.28 (Best-Response Dynamics): A learning process where each player best
responds to the current strategy profile of others.

At time t + 1, player i chooses:

2. NP: Problems where a solution can be verified in polynomial time
3. PPAD: Polynomial Parity Arguments on Directed graphs, a complexity class containing

the problem of finding a Nash equilibrium



st+1
i ∈ arg max

si∈Si

ui(si, s
t
−i)

Theorem 5.18: In a potential game, best-response dynamics converge to a Nash
equilibrium.

Definition 5.29 (No-Regret Learning): A learning algorithm has no regret if, in the limit, the
average payoff is at least as good as the payoff from always playing any fixed strategy.

Formally, a sequence of strategies sti
T

t=1 has no regret if for all si ∈ Si:

lim
T→∞

1
T

T

∑
t=1

[ui(si, s
t
−i) − ui(s

t
i, s

t
−i)] ≤ 0

Theorem 5.19 (Freund and Schapire, 1999): If all players use a no-regret learning
algorithm, the empirical distributions of play converge to the set of coarse correlated
equilibria.

Definition 5.30 (Coarse Correlated Equilibrium): A distribution σ over strategy profiles is a
coarse correlated equilibrium if for each player i and each strategy si ∈ Si:

∑
s∈S

σ(s)ui(s) ≥∑
s∈S

σ(s)ui(si, s−i)

5.9 Distributed Optimization
Definition 5.31 (Distributed Optimization): The problem of optimizing a global objective
function by multiple agents, each with access to only partial information.

Game-Theoretic Approach: Formulate the distributed optimization problem as a game
where each agent's objective is aligned with the global objective.

Definition 5.32 (Potential Game Formulation): Design a game with a potential function
that corresponds to the global objective function. The Nash equilibria of the game then
correspond to local optima of the objective function.

Example 5.7 (Distributed Resource Allocation): Consider n agents sharing m resources.
Each agent i chooses an allocation xi ∈ Rm

+  subject to constraints. The cost of resource j is
a function cj of the total allocation ∑n

i=1 xij.

The global objective is to minimize the total cost:

min
x

m

∑
j=1

cj(
n

∑
i=1

xij)

This can be formulated as a potential game where agent i's cost is:

Ci(xi,x−i) =
m

∑
j=1

xij ⋅ cj(
n

∑
k=1

xkj)



Theorem 5.20: The above game is a potential game with potential function:

Φ(x) =
m

∑
j=1

∫
∑n

i=1 xij

0

cj(t)dt

Consensus Algorithms: Distributed algorithms where agents aim to agree on a common
value.

Definition 5.33 (Consensus Protocol): Each agent i updates their value xi based on their
neighbors' values:

xt+1
i = ∑

j∈Ni

wijx
t
j

where Ni is the set of agent i's neighbors and wij are weights satisfying ∑j∈Ni
wij = 1.

Theorem 5.21: Under mild conditions on the weight matrix and the communication graph,
the consensus protocol converges to a common value for all agents.

Price of Anarchy in Distributed Systems: The ratio between the social welfare at the worst
Nash equilibrium and the optimal social welfare.

Theorem 5.22: In a network congestion game with linear latency functions, the price of
anarchy is at most 4

3 .

5.10 Selfish Routing
Definition 5.34 (Selfish Routing Game): A game where players choose paths in a network
to minimize their own latency, which depends on the congestion of each edge.

Formally, a selfish routing game consists of:

Each player chooses a path from si to ti, and the cost of a path is the sum of the latencies of
its edges, where the latency of an edge depends on the total flow on that edge.

Definition 5.35 (Wardrop Equilibrium): A flow is a Wardrop equilibrium if for each source-
destination pair, all used paths have the same latency, and this latency is minimal.

Theorem 5.23 (Existence and Uniqueness of Wardrop Equilibria): If the latency functions
are continuous and non-decreasing, a Wardrop equilibrium always exists. If the latency
functions are strictly increasing, the edge flows in a Wardrop equilibrium are unique.

1. A directed graph G = (V ,E)

2. A set of source-destination pairs (si, ti) for i ∈ 1, 2, … , k

3. A flow rate ri > 0 for each pair
4. A latency function ℓe for each edge e ∈ E



Example 5.8 (Pigou's Example): Consider a routing game with a single source-destination
pair and two parallel edges. The upper edge has constant latency 1, and the lower edge has
latency x, where x is the flow on that edge.

The socially optimal solution is to route half the traffic on each edge, giving an average
latency of 1

2 ⋅ 1 + 1
2 ⋅ 1

2 = 3
4 .

However, in the Wardrop equilibrium, all traffic uses the lower edge, giving a latency of 1.
The price of anarchy is:

PoA =
1
3
4

=
4

3

Theorem 5.24 (Roughgarden and Tardos, 2002): In a selfish routing game with latency
functions in class L, the price of anarchy is at most:

PoA ≤ sup
f∈L

β ⋅ f(β)

f(1) + (β − 1) ⋅ f(β)

where β is the unique solution to f(1) = f(β) + β ⋅ f ′(β).

For linear latency functions (f(x) = ax + b), this gives PoA ≤ 4
3

.

Braess's Paradox: Adding a new edge to a network can sometimes increase the latency of
all players at equilibrium.

Example 5.9 (Braess's Paradox): Consider a network with four nodes: source s, destination
t, and intermediate nodes v and w. There are edges from s to v, from s to w, from v to t, and
from w to t. The edges (s, v) and (w, t) have latency x (the flow on the edge), while the
edges (s,w) and (v, t) have constant latency 1.

In the Wardrop equilibrium, half the flow goes through v and half through w, for a total
latency of 1

2
+ 1 = 3

2
 per unit of flow.

Now add a zero-latency edge from v to w. In the new Wardrop equilibrium, all flow goes from
s to v to w to t, for a total latency of 1 + 1 = 2 per unit of flow.

The addition of the edge has increased the latency for all players.

5.11 Evolutionary Games
Definition 5.36 (Evolutionary Game): A game where a large population of agents
repeatedly play a symmetric normal-form game. The strategies that yield higher payoffs tend
to spread in the population.

Definition 5.37 (Replicator Dynamics): The differential equation describing how the
proportions of strategies change over time:



ẋi = xi [ui(ei,x) −
n

∑
j=1

xjuj(ej,x)]

where xi is the proportion of the population playing strategy i, ei is the strategy that always
plays i, and ui(ei,x) is the expected payoff to strategy i against the mixed strategy x.

Definition 5.38 (Evolutionarily Stable Strategy, ESS): A strategy x is an ESS if for all
strategies y ≠ x, there exists ϵy > 0 such that for all ϵ ∈ (0, ϵy):

u(x, (1 − ϵ)x + ϵy) > u(y, (1 − ϵ)x + ϵy)

Theorem 5.25: If x is an ESS, then (x,x) is a symmetric Nash equilibrium.

Theorem 5.26: If x is an ESS, then x is a locally asymptotically stable state of the replicator
dynamics.

Example 5.10 (Hawk-Dove Game): Consider a population where individuals can be either
"Hawks" (aggressive) or "Doves" (peaceful) when competing for resources.

Hawk Dove

Hawk V−C
2 , V−C

2
V , 0

Dove 0, V V
2 , V2

where V  is the value of the resource and C is the cost of fighting.

If V < C, the unique ESS is the mixed strategy x = ( V
C , 1 − V

C ).

If V > C, the unique ESS is pure strategy "Hawk".

Applications of Evolutionary Game Theory:

5.12 Applications in Networks
Age of Information
Definition 5.39 (Age of Information, AoI): A metric that captures the freshness of
information at a receiver. It is defined as the time elapsed since the generation of the most
recent update that has been delivered to the receiver.

Game-Theoretic Model: Multiple sources compete for a shared channel to transmit updates
to a common receiver. Each source aims to minimize its own AoI.

1. Biology: Evolution of behavior, altruism, cooperation
2. Economics: Evolution of preferences, norms, conventions
3. Computer Science: Evolution of protocols, algorithms
4. Sociology: Evolution of social norms, customs, institutions



Nash Equilibrium: A strategy profile where each source optimally trades off the freshness of
its own updates with the congestion caused by other sources.

Example 5.11 (AoI Minimization Game): Consider n sources, each with a rate constraint λi

for generating updates. The AoI of source i is:

Ai =
1

2λi

+
1

μ − ∑n
j=1 λj

where μ is the service rate of the channel.

The Nash equilibrium rates are:

λ∗
i =

μ − (n − 1)λ∗
j

2

If sources are symmetric, the unique symmetric Nash equilibrium is:

λ∗
i =

μ

n + 1

Game-Theory Enabled MIMO Systems

Definition 5.40 (MIMO System): A multiple-input multiple-output system where multiple
antennas are used at both the transmitter and receiver to improve communication
performance.

Game-Theoretic Model: Multiple transmitters share a wireless channel, each with multiple
antennas. Each transmitter aims to maximize its own data rate by choosing its transmit
covariance matrix.

Definition 5.41 (MIMO Rate Maximization Game): Each player (transmitter) i chooses a
transmit covariance matrix Qi to maximize its rate:

Ri(Qi,Q−i) = log det I + HiQiH
H
i (I +∑

j≠i

HiQjH
H
i )

−1

subject to a power constraint tr(Qi) ≤ Pi.

Theorem 5.27: The MIMO rate maximization game is a potential game with potential
function:

Φ(Q) = log det(I +
n

∑
i=1

HiQiH
H
i )

Theorem 5.28: The MIMO rate maximization game has a unique Nash equilibrium.

Cognitive Radio Networks: Networks where devices dynamically adjust their transmission
parameters based on the observed spectrum environment.

⎛
⎝

⎞
⎠



Game-Theoretic Model: Multiple cognitive radios compete for a shared spectrum, each
choosing its transmission parameters (power, frequency, etc.) to maximize its own utility.

Theorem 5.29: Under certain conditions, the cognitive radio power control game has a
unique Nash equilibrium, which can be reached through best-response dynamics.


